Software Defined Radio
function of wireless communication transmitter and receiver is changed by software.
See Also: Radio, Radio Frequency, Ham Radio, Mobile Radio, SDR
-
product
USRP Software Defined Radio Device
The USRP Software Defined Radio Device is a reconfigurable RF device that includes a combination of host-based processors, FPGAs, and RF front ends. The USRP Software Defined Radio Device include options that range from lower cost options with fixed FPGA personalities to high-end radios with a large, open FPGAs and wide instantaneous bandwidth. These devices can be used for applications such as multiple input, multiple output (MIMO) and LTE/WiFi testbeds, SIGINT, and radar systems.
-
product
USRP-2900, Software Defined Radio Device Bundle
784113-01
USRP-2900 Software Defined Radio Device Bundle - The USRP-2900 Teaching Bundle includes two USRP (Universal Software Radio Peripheral) Software Defined Radio Devices, turnkey courseware, and other accessories such as USB 3.0 cables and SMA attenuators. Students can use USRP … Software Defined Radio Devices with LabVIEW to experiment with real-world signals in introductory communications and digital communications laboratories. The USRP-2900 Teaching Bundle helps students experiment with FM radio, GPS, GSM, Bluetooth, and ISM signals. The bundle also includes components of a lab station that students can use to gain hands-on experience with live communication links between multiple USRP Software Defined Radio Devices.
-
product
USRP-2944, 10 MHz to 6 GHz, Reconfigurable USRP Software Defined Radio Device
783149-01
The USRP-2944 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
USRP-2974, 10 MHz to 6 GHz, x86 Processor, GPS-Disciplined OCXO, USRP Software Defined Radio Stand-Alone Device
785606-01
The USRP-2974 is built on the LabVIEW reconfigurable I/O (RIO) architecture with an onboard Intel Core i7 processor running the NI Linux Real-Time OS. The USRP-2974 is a USRP Software Defined Radio Stand-Alone Device, meaning that you can target the onboard processor with LabVIEW Communications System Design Suite to deterministically perform processing. The USRP-2974 is also equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) Reference Clock. You can prototype a range of advanced research applications that include stand-alone LTE or 802.11 device emulation; Medium Access Control (MAC) algorithm development; multiple input, multiple output (MIMO); heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
-
product
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783151-01
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2952 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2952 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
Software-Defined Radio (SDR)
Fobos
The Fobos SDR is a high-performance SDR receiver with a 100 kHz to 6 GHz range, 14-bit sampling, and 50 MHz bandwidth, with dual conversion and two HF channels.
-
product
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783927-01
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2952 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2952 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
USRP‑2930, 20 MHz Bandwidth, 50 MHz to 2.2 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device
781910-01
20 MHz Bandwidth, 50 MHz to 2.2 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device - The USRP‑2930 is a tunable RF transceiver with a high-speed analog‑to‑digital converter and digital‑to‑analog converter for streaming baseband I and Q signals to a host PC over 1 Gigabit Ethernet. It also features a GPS-disciplined oscillator (GPSDO) with PPS accuracy of ±50 ns. You also can use the NI USRP‑2930 for the following communications applications: white space; broadcast FM; public safety; land-mobile, low-power unlicensed devices on industrial, scientific, and medical (ISM) bands; sensor networks; cell phone; amateur radio; or GPS.
-
product
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device
783923-01
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2940 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
Software Defined Radio Program
Scientific Research Corp. STI Division
SRC is on the forefront of software defined radio technology, test, and interoperability. We provide systems engineering support for waveform testing, software and hardware integration, standards compliance, and information assurance.
-
product
USRP-2940, 50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device
783146-01
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2940 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
USRP‑2932, 20 MHz Bandwidth, 400 MHz to 4.4 GHz Software Defined Radio Device
781909-01
20 MHz Bandwidth, 400 MHz to 4.4 GHz Software Defined Radio Device - The USRP‑2922 is a tunable RF transceiver with a high-speed analog‑to‑digital converter and digital‑to‑analog converter for streaming baseband I and Q signals to a host PC over 1 Gigabit Ethernet. You can also use the USRP‑2922 for the following communications applications: WiFi, WiMax, S‑band transceivers, and 2.4 GHz industrial, scientific, and medical (ISM) band transceivers.
-
product
Universal Software-Defined Radio
VPX3-E320
Curtiss-Wright Defense Solutions
Designed for superior durability and reliability, the VPX3-E320 incorporates Curtiss-Wright’s industry-leading rugged hardware design and validation practices to meet the stringent requirements of the most demanding front-line environments. Paired with the industry-leading UHD based software-defined radio workflow, this product is truly unique.
-
product
USRP-2900, 70 MHz to 6 GHz USRP Software Defined Radio Device
784039-01
70 MHz to 6 GHz USRP Software Defined Radio Device - The USRP‑2900 is a tunable RF transceiver with full-duplex operation. It offers bus-powered connectivity with USB 3.0 or USB 2.0. You also can use the NI USRP‑2900 for the following communications applications: white space; broadcast FM; public safety; land-mobile, low-power unlicensed device (ISM) bands; sensor networks; amateur radio; or GPS.
-
product
USRP-2955, 10 MHz to 6 GHz, 80 MHz Bandwidth, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
785264-01
The USRP-2955 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless receiver systems. It is designed for over-the-air signal acquisition and analysis. It features a two-stage superheterodyne architecture with four independent receiver channels and shares local oscillators for phase-coherent operation. It also offers a Kintex-7 FPGA programmable with the LabVIEW FPGA Module. With these features, the USRP-2955 has the RF and processing performance for applications such as spectrum monitoring, direction finding, signals intelligence, wideband recording, and radar prototyping. The USRP-2955 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) Reference Clock, which improves frequency accuracy and synchronization.
-
product
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device
783147-01
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2942 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
USRP-2901, 70 MHz to 6 GHz, 2-Channel USRP Software Defined Radio Device
784040-01
70 MHz to 6 GHz, 2-Channel USRP Software Defined Radio Device - The USRP‑2901 is a tunable RF transceiver with full-duplex, MIMO operation. It offers bus-powered connectivity with USB 3.0 or USB 2.0. You can also use the NI USRP‑2901 for the following communications applications: white space; broadcast FM; public safety; land-mobile, low-power unlicensed device (ISM) bands; sensor networks; amateur radio; or GPS.
-
product
PXI Vector Signal Transceiver
The PXI Vector Signal Transceiver (VST) combines the flexibility of a software defined radio architecture and RF instrument class performance. You can use the VST to test a variety of cellular and wireless standards, and you can easily expand the VST's three-slot, 3U PXI Express form factor to support multiple input, multiple output (MIMO) configurations. The VST software is built on LabVIEW FPGA, and features several starting points for your application including application IP, reference designs, examples, and LabVIEW sample projects.
-
product
USRP Software Defined Radio Reconfigurable Device
The USRP Software Defined Radio Reconfigurable Device is built on the LabVIEW reconfigurable I/O (RIO) and universal software radio peripheral (USRP) architectures. It includes a powerful FPGA for advanced DSP that you can program with the LabVIEW FPGA Module. The device includes 2x2 MIMO transceivers or four-channel superheterodyne receivers, supporting center frequencies from 10 MHz to 6 GHz, with up to 160 MHz of instantaneous bandwidth. The USRP Software Defined Radio Reconfigurable Device also optionally includes a GPS‐disciplined oven-controlled crystal oscillator (GPSDO), which provides greater frequency accuracy than temperature- compensated crystal oscillators. Prototyping applications include LTE and 802.11 prototyping, spectrum monitoring, signals intelligence, military communications, radar, direction finding, and wireless research.
-
product
PXIe-5672, 2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator
779900-01
2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator —The PXIe‑5672 features quadrature digital upconversion, which reduces waveform download and signal generation time. It is a general-purpose vector signal generator that can generate standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM. The PXIe‑5672 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks. For specific communications standards, you can use various software add-ons to generate modulated signals according to standards such as WCDMA, DVB‑H, and ZigBee.
-
product
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device
783924-01
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2942 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
Switch Device for PCI Express
The Switch Device for PCI Express provides two PCI Express upstream ports and eight downstream ports. You can connect the downstream ports to external devices, such as a Software Defined Radio Reconfigurable Device, to create large multichannel, multiple input, multiple output (MIMO) systems. You can also connect multiple Switch Devices for PCIe to a single PXI Express chassis to create large MIMO systems with a Software Defined Radio Reconfigurable Device.
-
product
Track and Hold Data
Track and hold amplifiers are used to expand the bandwidth and/or high-frequency linearity of high-speed A/D conversion and signal acquisition systems. Track and Hold Amplifiers can be used in various applications including RF ATE Applications, Digital Sampling Oscilloscopes, RF Demodulation Systems, Digital Receiver Systems, High Speed Peak Detectors, Software Defined Radio, Radar, ECM & ELINT Systems and High Speed DAC De-Glitching.
-
product
PXI-5670, 2.7 GHz RF Vector Signal Generators
PXI-5670 / 778768-03
2.7 GHz PXI Vector Signal Generator—The PXI‑5670 has the power and flexibility you need for product development applications from design through manufacturing. It can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, PSK, MSK, and QAM. The PXI‑5670 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks.
-
product
NI-5783, 40 MHz Bandwidth Transceiver Adapter Module for FlexRIO
784364-02
The NI‑5783 has DC‑coupled inputs with two variants: an elliptic filter variant optimized for frequency-domain applications and a Butterworth filter variant optimized for time-domain applications. The NI‑5783 is particularly well suited for applications in software defined radio, electronic warfare, high-performance machine control, and medical imaging. The NI‑5783 is compatible only with the PXI FPGA Module for FlexRIO modules that have a Kintex‑7 FPGA and the stand-alone Controller for FlexRIO.
-
product
Mixed-Signal Front Ends (MxFE) - Scalable Software-Defined Radio Solution with 7.5 GHz Bandwidth
The mixed-signal front end (MxFE®) provides today’s system designers working in communication infrastructure, instrumentation, and aerospace and defense with a scalable software-designed radio solution with a very wide 7.5 GHz bandwidth. This solves several complex challenges including increasing bandwidth demands and signal chain complexity as system operation moves from the RF to the mmWave spectrum domain and as bandwidth demands move from megahertz to gigahertz.
-
product
PXIe-5644, 6 GHz, 80 MHz Bandwidth, RF PXI Vector Signal Transceiver
782376-01
6 GHz, 80 MHz Bandwidth, RF PXI Vector Signal Transceiver—The PXIe‑5644 combines a vector signal generator and vector signal analyzer with FPGA-based real-time signal processing and control into a single device, also known as a VST. Because of this software-designed approach, the PXIe‑5644 features the flexibility of a software defined radio architecture with RF instrument class performance.
-
product
PXI-5670, 2.7 GHz PXI Vector Signal Generator
PXI-5670 / 778768-01
2.7 GHz PXI Vector Signal Generator—The PXI‑5670 has the power and flexibility you need for product development applications from design through manufacturing. It can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, PSK, MSK, and QAM. The PXI‑5670 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks.
-
product
50 MHz to 2.2 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783926-01
50 MHz to 2.2 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2950 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. With the flexible hardware architecture and the LabVIEW unified design flow, researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2950 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
Low Noise Converter for Radio Amateurs
The concept of software defined radios (SDR's) is becoming increasing popular in both commercial, military and Amateur Radio circles. In their basic form, the use simple front end filtering followed by a Quadrature Sampling Detector (QSD) with the post detection processing done in software using the sound card found in PC's. Several popular kits have been developed to introduce Amateurs to the concept.





























